
AD

Award Number: DAMD17-01-1-0825

TITLE: Zero Trust Intrusion Containment for Telemedicine

PRINCIPAL INVESTIGATOR: Arun K. Sood, Ph.D.
Yih Huang
Robert Simon
Elizabeth White
Kevin Cleary

CONTRACTING ORGANIZATION: George Mason University
Fairfax, Virginia 22030

REPORT DATE: December 2002

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

20030731 117_

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 2002 Final (I Sep 01 - 30 Nov 02)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Zero Trust Intrusion Containment for Telemedicine DAMD17-01-1-0825

6. AUTHOR(S) :

Arun K. Sood, Ph.D., Yih Huang, Robert Simon,
Elizabeth White, Kevin Cleary

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

George Mason University
Fairfax, Virginia 22030

Email: asood@gmu.edu
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

11. SUPPLEMENTARY NOTES
Original contains color plates: All DTIC reproductions will be in black and white.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 Words)

none provided

14. SUBJECT TERMS: 15. NUMBER OF PAGES
intrusion management systems (IMS), self-cleansing intrusion tolerance 26
(SCIT) 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

C over .. 1

SF 298 .. 2

Table of Contents ... 3

Executive Summary ... 4

Introduction .. 5

Body .. 5

Key Research Accomplishments ..

Reportable Outcomes ...

Conclusions .. 20

References .. 20

Appendices .. 22

3

Zero-trust Intrusion Containment for Telemedicine

EXECUTIVE SUMMARY

Intrusion Management Systems (IMS) serve to protect complex computer systems from unauthorized
intrusions. Our objective is the design and analysis of "zero-trust" Intrusion Tolerant Systems. These are
systems built under the extreme assumption that all intrusion detection techniques will eventually fail.

Our approach, Self-Cleansing Intrusion Tolerance (SCIT), centers around two key concepts: zero trust and
system self-cleansing. Our zero trust principle assumes that a successful intrusion may have taken place on
any part of the system that is currently running. System self-cleansing involves both hardware and software
elements that periodically restore themselves from a trusted source. Our goal is to provide increased
resistance to intrusions with minimal disruption of the services provided by the overall system.

This final report summarizes our research. This research project introduces a new approach to information
security that we call Self-Cleansing Intrusion Tolerance (SCIT). System self-cleansing involves both
hardware and software components that periodically restore themselves from a trusted source. We began
this work by focusing on one key component of such a system - a SCIT firewall. Thereafter we built a
SCIT web server. To confirm applicability of SCIT to the telemedicine arena, we performed perceptual
testing and evaluating the effects of SCIT on packet loss and perceived performance.

Our research has accomplished the following:
I. Explored key issues in the implementation of SCIT such as the frequency of self-cleansing, the

use of a SCIT certificate for authentication, and trust and dynamic reconfiguration.
2. Developed a demonstration of SCIT firewall and SCIT web server.
3. Investigated other SCIT components including a network file system (NFS) server and a

certification server and client to determine suitability for SCITization.

Zero-trust Intrusion Containment for Telemedicine
4

1. INTRODUCTION
Intrusion Management Systems (IMS) serve to protect complex computer systems from

unauthorized intrusions. The traditional IMS approaches rely on intrusion prevention and detection,
followed by implementation of intrusion resistance procedures. A key assumption of a traditional IMS is
that it is possible to detect all intrusions.

We believe that the sophistication and rapid evolution of information warfare requires the more
pessimistic assumption that undetected intrusions will occur and must be guarded against as well. Our
approach, Self-Cleansing Intrusion Tolerance (SCIT), centers around two key concepts: zero trust and
system self-cleansing. Our zero trust principle assumes that a successful intrusion may have taken place on
any part of the system that is currently running. System self-cleansing involves both hardware and software
elements that periodically restore themselves from a trusted source. Our goal is to provide increased
resistance to intrusions with minimal disruption of the services provided by the overall system. Our
approach both complements and strengthens existing IMS approaches, by adding another layer of defense.

In the current research we have adopted a two pronged approach:

1. Explore the technical issues that will ensure the applicability of SCIT is a broad class of
scenarios.

2. Build a SCIT demonstrator for a key part of the security system. Our current focus has been
on a SCIT firewall.

In this progress report we provide a summary of the status of our research and present our future
plan of work. The rest of the report is divided into 5 parts. Section 2 provides the objective of this project
and Section 3 the contextual framework for the research. Our research effort is proceeding in two tracks,
and the results and development e fforts are p resented in S ections 4 and 5. S ection 4 treats the various
factors that impact on the intrusion containment strategy that has been adopted in this research. We
highlight the importance of issues such as the frequency at which the self cleansing operation should be
conducted, the use of a SCIT certificate for authentication and assurance that the necessary self-cleansing
operation was done recently, formulation of trust and dynamic reconfiguration to support SCIT. Section 5
focuses on the prototype system that we have built. We discuss the objective of the planned demonstration,
the architecture of the prototype including the firewall and secure tunneling features, and the test approach.
The demo is operational and the client station is b eing used t o surf t he web on a regular b asis, and a n
example is provided. Future demo plans are provided and we also discuss the future development paths for
this system, and in this way we show the link between the prototype development and the research
mentioned in Section 4. The final section (Section 6) provides a summary of the future plans for this
research effort.

2. OBJECTIVE
Our objective is the design and analysis of "zero-trust" Intrusion Tolerant Systems. T hese are

systems built under the extreme assumption that all intrusion detection techniques will eventually fail. For
this project, our objective is to explore a completely new approach for Intrusion Tolerance and information
assurance that guarantees correct functioning of critical system features even under the certainty of
successful cyber-based attack. Our approach assumes that all system components will eventually be
corrupted and therefore need to be periodically cleaned.

3. THE CONTEXT FOR THIS PROJECT
In Figure 1 we provide a logical framework for application of the SCIT approach. The figure

shows two different SCIT-protected domains. The first is a mobile ad hoc network, of the kind that might
be set up on the battlefield or a hostile or remote environment. The second is a SCIT domain within a more
protected, wired enclave. SCIT protocols are run inside a single domain. Each domain continuously runs
self-cleansing algorithms and protocols. This guarantees that the system is periodically immunized from
successful, long time cyber attack.

Zero-trust Intrusion Containment for Telemedicine
5

We believe that the SCIT approach applies to a wide variety of military environments, including
the static environments like a military hospital and small specialist offices and more mobile units that may
be communicating using ad hoc wireless networks. We note that the overall security of the system depends
on the weakest link. By ensuring that this link is periodically cleansed, SCIT can be used to improve
security for networked static and mobile systems

Figure 1: Logical SCIT Topology

Mobile ad-hoc network

Router/firewall/

" .. c•l Intrusion Detection
Prot.

D)m.

Router/firewall!
ofIntrusion DetectionI

To rest of networ LAN I
4EBridgJ

Router•irewall !

Intrusion Detection Br LAN
sensor I

To highlight the potential impact of SCIT, we discuss below the application of SCIT in two typical
application domains:

1. Small and mid size users. Specialists' offices and military field units are examples of such users. Such
users have low Information Technology (IT) infrastructure investment, and the level of IT support is
also low. These users have a heightened consciousness of the privacy requirements for their patients,
but have limited expertise and resources for security monitoring and administration. The data in this
environment is potentially stored on a single server. Our research for such users focuses on providing
"security for dummies" technologies that relieve the above problems. In particular, we develop self-
cleansing technologies for typical small-user setups to minimize the cost of security maintenance, or
when successful intrusion occurs, to contain the damage. Our efforts in building a SCIT demo

Zero-trust Intrusion Containment for Telemedicine
6

platform have made great progress in one critical component of small-user environments, namely the
firewall. Figure 2 compares a typical secure single server environment with SCIT based environment.

2. Large institutional users. Military hospitals are examples of such users. These users have significant
IT investment, and regular in-house, on-site IT support. These users have higher availability of
resources, and IT expertise is available. Generally, these organizations are conscious of the
requirements of secure computing environment, and have resources for monitoring and maintaining the
system security. In such environments, security has to be maintained at the level of the servers and at
the network level. Our research for institutional users will concentrate on integrated, network-wide
SCIT approaches. Of course, the scope and high level of integration in such an approach renders it
significantly challenging. As a starter, we have studied existing network routing technologies and
identified a type of routing protocols, called Link-State Routing (LSR), as "SCIT-compatible." We
also notice that the most widely used "local" routing protocol in the Internet, namely, Open Shortest
Path First (OSPF) protocol, uses link state routing. (A local routing protocol is used for traffic routing
within individual institutions or organizations.) Figure 3 compares a traditional network based system
with a SCIT based network system.

Figure 2: Single Server Secure System Architecture with SCIT

Intrusion Intrusion
Detection Detection
System System

I 1 ' 7
IFirwl Firewall I Firewalll

PCI PCI
Server Server

Typical System System
(without SCIT) (with SCIT)

Zero-trust Intrusion Containment for Telemedicine

Figure 3: Secure Network Architecture with SCIT

Intrusion Intrusion
Detection Detection
System System

I I

Typical System Typical System
(without SCIT) (with SCIT)

4. INTRUSION CONTAINMENT
4.1 Frequency of Self Cleansing

In spite of the best Firewalls and Intrusion Detections Systems, it is possible that intruders
(hackers) will be able to launch a successful attack. Our zero-trust approach is geared towards this
pessimistic scenario. Our approach of self-cleansing limits the amount of time that a successful intruder
has to do "bad" things. More frequent self-cleansing operations will reduce the time the intruder has to do
damage. However, very high frequencies of self-cleansing will either force high degree of hardware
redundancy or reduce the system performance and also have the potential of reducing the quality of the
presentation. Consequently, we ask the following question:

"What should be the frequency of self-cleansing?"

To answer this question, one needs to model the loss suffered with respect to the time that the
intruder can spend in the system. For this purpose we define the Intruder Residence Time as the time that
the intruder has to do damage in the server. We anticipate that the loss curve will be an S-curve of the form
in Figure 4. If the Intruder Residence Time is less than the low loss threshold, then the cost of the intrusion
is low, while an Intruder Residence Time greater that the high loss threshold will lead to near max loss.
The steep slope between the two thresholds indicates that it is necessary to limit the Intruder Residence
Time to less than low loss threshold.

In terms of the SCIT implementation, the time between consecutive self-cleaning events should be
less than the low loss time. We note that the determination of the loss curve requires an empirical study
and an assessment of the value of the data stored on the server.

Zero-trust Intrusion Containment for Telemedicine
8

Figure 4: Impact of Intruder Residence Time on Losses.

Losses vs. lime after intrustion

20

18

16

14 High loss
threshold th

12

10

8

6
Low loss4/threshold t] ,

2-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4.2 Authentication of Self Cleansing - SCIT Certificates
As we have argued, a significant advantage of self-cleansing is the ability for system users to be

assured of a secure system. An important aspect of this is for users and system client to be able to verify
that the self-cleansing has actually been performed. This verification requires SCIT-based authentication.
From a security point-of-view, authentication is being able to prove who you are. Data integrity is proving
that an object has not been changed or manipulated, expect by an authorized user. We strengthen this
definition for SCIT. We say that SCIT-authentication is the ability to guarantee that a system object is
available after a particular self-cleansing event. SCIT-defined authentication can be achieved via the
introduction of a SCIT certificate.

Certificates are used in distributed systems to enable different users to exchange public security
keys without having to directly contact a well-known security key provider. In effect, if I present you with
a certificate, I can "prove" to you that I am who I claim I am, if you believe the authority that granted me
the certificate. It is possible, using well-known cryptological techniques, to provide an unforgeable
guarantee of a certificate signed by a trusted authority. We will produce a similar scheme for the SCIT
environment.

Clients of SCIT services need SCIT certificates as unforgeable proof that an object has been
cleansed. In this way, clients both inside and outside of a particular SCIT domain can receive the benefits
of a SCIT-ized system. Notice that the certificate does not prove authenticity or data integrity for a client;
rather, it proves to a client, which may be a human user, that an object has been self-cleansed.

Zero-trust Intrusion Containment for Telemedicine
9

There are several parts of this problem that need to be addressed. Here we present some of the
questions that must b e a nswered. F irst, which entity should p roduce a S CIT certificate? S econd, what
should the certificate actually contain? Third, which techniques can be used to minimize the overhead of
producing and using the certificates? Finally, which clients might require the SCIT certificates, and how
would it be used?

Our analysis assumes that there are some fully trusted entities when the system recovers. This
helps answer the first question of which entities should produce a SCIT certificate - it is these trusted
entities. One example is the multiple firewall server system shown in Figure 2.

The next question is what type of data needs to be in the certificate? Conceptually, the certificate
needs to prove the identity of the sender, in this case the trusted self-cleanser. In general, proof of identity
is an issue of the systems' trust model. This is currently considered an open area in security research, and
later we describe some of the issues here. For purposes of our SCIT certificate, we assume that the identity
of trusted SCIT server can be verified in one of two ways. The first way is if there is a shared secret key
between the client and the trusted server. Recall that the clients' security and identity is not the issue here.
If the client is in the SCIT domain then it will be self-cleansed. If it is outside the domain then the only
purpose of the certificate is to prove that different objects have been self-cleansed. The second way of
proving identity is via a public certificate, as proposed in X.509, which is currently the industrial standard.

The other fields in the SCIT certificate include an identifier for the cleansed object. For instance,
if web server is currently cleansed via multiple copies, then the web server address can be identified. It is
not necessary to explicitly identify which replicated copy is being used. Each SCIT certificate must also
have an unforgeable way of identifying the current cleansed period, i.e., when the object was cleansed and
for how long this should be.

The next question is what protocols should be used to distribute the SCIT certificate, and what
cryptological approaches can be used to authenticate the information in the SCIT certificate. Delivery of
the certificate does not present any special problems, and can be accomplished by whatever mechanisms
are currently used by the system, for instance via a network level multicast (sending a single message to a
group of receivers), by a bulk e-mail, etc. Authenticating the information in the certificate, including the
interval of the cleanse cycle, can also be handled in several of ways. One way would be to simply encrypt
the cycle number and timestamp within the message. Although this approach will work, one drawback is
that it forces all of the receivers to perform a potentially computationally expense decryption for each
certificate. This may be a burden for clients that have minimal computational and network resources, such
as mobile nodes in a battlefield situation.

In order to alleviate the above problems we propose that the SCIT cleansing interval information
is sent via multicast on a per object basis to all interested parties. Further, the information itself can be
authenticated via a cryptological mechanism known as a one-way hashing function. It works as follows:
all clients that are interested in a particular object receive SCIT certificates on a multicast group, e.g, by
listening to a well-known network connection. The information that authenticates the value of the cleansed
interval is obtained by using the one-way hash function on a particular SCIT field. The advantage of this
scheme is several-fold. Only interested clients need to receive the SCIT certificate. One-way hash
functions are known to be secure, so that as long as the identify of the SCIT server can be verified, the
value of the SCIT interval can be authenticated as well. Further, one-way hash functions do not require that
each client receive earlier SCIT-certificate messages. This means that messages can be lost or simply
ignored, until the client requires a certificate for a particular object. In fact, we demonstrate below that this
scheme does not even require that an entire certificate be sent each time an object is cleansed. This may be
of particular advantage in resource poor or hostile environments.

An additional question is how the certificate could actually be used. Using the above approach,
this is demonstrated by example. Assume that at some point a client will want to access a SCIT-ized web
server. The client obtains the SCIT-certificate from the trusted SCIT server. This provides the necessary
information, including some necessary values for the one-way hash function that the client will need later.
When the client wishes to access the web server it also wants to verify that the server has recently been

Zero-trust Intrusion Containment for Telemedicine
10

cleansed. It does this by first listening to the appropriate network connection for the Web Server. Once it
obtains the current certificate can verify the current cleansing cycle either through full-blow decryption or
by use of the one-way hash function. In the later case it is possible to significantly reduce the amount of
overhead required, because all that is required is the current value of the cleanse interval and a one-way
hash value, which is used by the client to authenticate that the message was sent from the SCIT server.
From a technical point of view, the input to the hash function is a combination of previously calculated
hash values and the current cleanse interval.

Finally, we also specify the minimal requirements for the information contained in the SCIT
Certificate are the proof of identity for the issuer, an identifier for the cleansed object, and timing interval
relating for when the object was cleansed and, optionally, how long this particular cleansing cycle will last.
In distributed systems, proof of identity is described in terms of the application's trust model. As indicated
in our earlier study, the trusted SCIT certificate server can be verified in one of several ways. One way is
to have a shared secret key between the client and the trusted server. Let us elaborate on this model.
Shared secret keys can be deployed in a variety of ways, but typically this approach is most appropriate for
small and medium sized enterprises. By using the shared secret key approach, each time an object is
cleansed the SCIT Certificate Server produces a new certificate containing the cleansed objects identifier,
the time that it was cleansed, along with other potential information such as for how long before this
cleansed object will be cleansed again.

Using the shared secret key technique, the validity of the certificate is obtained in one of several
ways. One was is to encrypt the entire certificate using the shared secret key. In this way, only trusted
clients could decrypt the key and therefore obtain the information. Another approach is to send out
certificate information in unencrypted form, but to digitally sign the certificate using the shared secret key.
In this approach a client will be able to prove that the certifier is who they claim to be, because correct
signing is possible only if the signer has the key.

The shared secret key approach is p owerful for most small systems that do not have too many
objects to manage or users to support. However, there may be important performance drawbacks to this
approach as the system scales up in size. For instance, if there are many users and SCIT certificate servers
then there will need to be many pairs of shared keys. A more general approach is to use existing trust
architectures and to fold the management, protocols and trust model of the SCIT certificate into current
proposed public certificate standards. We now explain how this could be done using X.509 [X509], one of
the more popular standards. It should be clear that the traditional use of X.509 is for user authentication.
However, as we will see below, the standard is flexible enough so that we can directly apply it to SCIT.

X.509 defines an entire framework for authentication services. Part of the X.509 standard is the
definition of a common, general-purpose certificate. This certificate format is currently used in a number
of important Internet protocols, including S/MIME, for e-mail, IP Security, for general network and
transport layer security, and S SL/TLS, for secure distributed programming. X .509 does not specify the
exact security algorithms to use; rather, it defines the data format and trust model for their use. Several
features of the X.509 certificate format make it an attractive possibility for SCIT. First, it is an existing
standard, reasonably well-understand and therefore will be compatible with other approaches. Second, it
used Public Key Cryptography, and therefore avoids the problem of shared secret key and the attendant key
distribution problem.

The data fields in the X.509 certificate are appropriate in a SCIT Environment. We are basing our
discussion on X.509 version 3. This version includes a very flexible naming and directory service
conventions, so that certificates can be directly used for both SCIT objects and users. Version 3 has
specifically the ability for the user to define an entire name space of managed objects. Another data field is
the period of validity. This consists of two dates, the first and the last on which the certificate is valid.
This can be used to indicate the cleansing time of the object. Finally, X.509 allows the use of user-defined
policy constraints that can be used to manage the scope and usage of SCIT certificates.

Based on the above discussion we believe that the functionality of the SCIT certificate can be
achieved using an X.509-like mechanism. Notice that this approach addresses the problems of scalability
and interoperability with other security techniques. It also allows the use of the SCIT certificate both inside
and outside the SCIT domain. Finally, the certificates themselves can be encrypted, so that i f required
cleansing information can be kept confidential and secure.

Zero-trust Intrusion Containment for Telemedicine
11l

[X509] See http://www.ietf.ori/html.charters/pkix-charter.html for a comprehensive web site with
pointers to the X.509 standard.

4.3 Trust in SCIT
Although we believe that the SCIT certificate provides a mechanism for authenticating self-

cleansing actions, one related issue that has not been addressed is trust. Just as in human society, trust is
not a boolean property; it comes in an infinite number of degrees. One of our tasks is to determine what an
appropriate level of trust is for the system and how to establish it. Consider the following. In a certificate
based system, networks or chains of certificates are built to establish identities. T his is straightforward
when taking a global (system-level) perspective; however, from a local node level, things get more
complicated. Suppose a node A knows it can trust certificates from another node B. When A receives a
certificate from node C who claims to has been certified by trusted B, A must determine whether or not to
believe this claim. This requires A to consider the certificate chain back to B. There is a large body of
work in trust management that we hope to be able to use in this context. In addition to approaches designed
to work in certificate-based systems, there has been recent work on trust in credential-based systems. This
may be of particular interest in tele-medicine systems because it merges the issues of authentication and
authorization.

4.4 Software-Level SCIT
The goal of this research was to investigate the feasibility of a self-cleansing approach that forced

hardware to re-boot at intervals in order to thwart intrusions. However, this approach is not complete
without considering both how to cleanse the software and also how software running on these systems can
be made to react appropriately when this self-cleansing occurs. Both of these problems require some
method of making runtime changes to a (possibly distributed) software application.

Dynamic reconfiguration is the process of making changes to a running application. These
changes can include moving parts of a distributed application to other platforms, replacing components of
the application with updated components and even changing the overall configuration (components and
connections) of the application. Techniques for dynamic reconfiguration have been studied in other
contexts, such as specialized load balancing; we believe some of this research is useful in the context of
self-cleansing. In particular, heterogeneous process migration based approaches may be used to continue to
provide access to software systems as the underlying hardware is being cleansed. It may also be the case
that techniques for component updating can be used to cleanse software if the running component itself is
corrupted.

Our current cleansing techniques borrow ideas from fault tolerance based approaches, the use of
multiple copies of a system element so that availability is not compromised while an element is being
cleansed. However, even given this structure, there are two different possible dynamic approaches to
consider: proactive and reactive. Reactive reconfiguration attempts to respond to changes in the current
situation. The Survivability architecture work at UVA uses explicit control to manage information systems
using data from infrastructures, their information systems, and their operational environments. Their
approach is to find a way to continuously make configuration decisions based on the current state of the
overall system. Their approach is decentralized and hierarchical.

While we can learn something from this reactive approach, it assumes that intrusions are
detectable at some level, possibly by a change to the environment. If we assume that some intrusions are
not easily detectable and that we would like to thwart intruders before damage is done, then a proactive
approach that works in conjunction with the underlying system cleansing could be important. In proactive
reconfiguration, configuration changes are driven by the need to prevent a possible intruder from harming
the application and its data.

A number of issues arise when considering using dynamic reconfiguration techniques within the
context of SCIT:
* How to ensure that dynamic changes to the application configuration do not change the application's

functionality?

Zero-trust Intrusion Containment for Telemedicine
12

Consistency i ssues a rise in the context of dynamic changes to an application configuration. For
example, when cleansing requires switching between primary copies of a software component that is
involved in a transaction, either the switch must wait until the transaction has ended, or the switch must be
done in a manner that hands the state of the transaction over to the new component.

* How to ensure that the software still meets availability requirements?
Techniques for adding self-cleansing to overall systems must have a minimal impact on the

availability of the system. This is not a solved problem in the context of dynamic software reconfiguration;
some techniques require waiting for a given state before changes can be made to the configuration of the
software. This waiting time may or may not be unbounded.

* How to make existing applications adaptive?
We will want to consider what requirements we want to place on components in this context. If

we require components to be able to actively participate in proactive reconfiguration changes, we may be
unable to address applications that use COTs components. On the other side, if no application components
can participate actively, this may limit the types of configuration changes we can consider. Some middle
ground may be the answer -- either where some of the components can participate or where we can wrap
components (or use "agent" components) to deal with the reconfiguration.

* How to secure the mechanism itself?
Adding reconfiguration mechanisms to an e xisting environment gives a n i ntruder a n additional,

possibly very tempting, target. Any approach that increases system vulnerabilities must be discarded.

References:

Survivability Architectures: Issues and Approaches,
J. Knight, K. Sullivan, M. Elder, C. Wang,
DARPA Information Survivability Conference and Exposition, 2000.

Information Survivability Control Systems,
K. Sullivan, J. Knight, X. Du, S. Geist
Proceedings of the 21 st International Conference on Software Engineering, IEEE, 1999, pp. 49-7 1.

5. CURRENT STATUS OF THE DEMO
In this project we demonstrated the application of SCIT to a significant component of a traditional

secure system. At this point of our development, we are able to show some of these features. In this note,
we describe the architecture, the current status and future plans.

5.1 Objective of the Demo
Assess the impact of SCIT firewall on system performance. This assessment will be conducted at

two levels - perceptual and packet loss assessment.

5.2 SCIT Firewall Demo Architecture
The overall architecture is shown below.

Zero-trust Intrusion Containment for Telemedicine
13

Figure 5: SCIT Firewall Demo Architecture

Windows 2000

Host Operating System - Linux

Secure tunnels /
thru public Internet \ /

A secure tunnel connects an Apache web server at GMU, a reflector at GU, and a client (Windows
2000) inside the SCIT firewall. A client uses the Explorer on Windows 2000 to connect to the Apache
web server. The client Windows, protected by SCIT firewalls, reaches the sever via a secure tunnel that
goes from the client machine to a reflector machine . This setup is designed to emulate a remote client
accessing a private server using VPN (virtual private networks).

5.3 Client Platform
The client Windows machine and its SCIT firewalls are implemented as virtual machines, on a

Pentium 4 PC running RedHat 7.2 Linux. This is achieved by installing on the Pentium 4 PC the VMWare
Workstation 3.0 for Linux, which enables the use of one or more guest operating systems, namely virtual
machines, on top of a host system. VMWare 3.0 supports not only virtual machines but also virtual
networks, switched Ethernet networks emulated by the VMWare 3.0 software. We use this feature to build
two virtual networks, one with subnet ID 192.168.181.0/24 and the other 192.168.202.0/24; please see
Figure 6. The first subnet connects the host to the two firewalls. Both firewalls are implemented by a
specialized version of RedHat 7.2 Linux. The latter subnet connects the firewall boxes to the client
Windows. Inbound traffic are first received by the host (host interface not shown in the figure) and relayed
to one of the firewalls, which filter and relays the traffic to the client Windows. A third subnet,
192.168.200.0/24, is used by the two firewalls to probe each other.

5.4 SCIT Firewall Implementation
In the figure below, two sets of network interfaces are highlighted by colors. The green ones are

firewall interfaces connecting to the host. Because the SCIT firewalls operate alternatively, the host sees
only one firewall at any moment of time, or more precisely one firewall interface. Thus, the two green
interfaces must share one IP address. This "green" address is the gateway address in the Host routing table
to reach subnet 192.168.225.0/24. Likewise, the red interfaces are the SCIT firewall interfaces that connect
to the client Windows and must share one IP address. This "red" address is configured as the gateway
address on the client Windows. Now consider a time when Firewall 1 is operating and Firewall 2 has just
finished self-cleansing and is about to take over. Since Firewall 1 presently owns both the green and red
addresses, Firewall 2 needs to "grab" the two addresses from Firewall 1. We achieved this by Gratuitous
ARP messages (ARP stands for address resolution protocol).

Zero-trust Intrusion Containment for Telemedicine 14

Figure 6: Client Platform Configuration using Virtual Machine

Client platform
Client Machine setup
Windw 2000

192.168.225.0/24

I'SCIT Firewall 1 192.1L68.8ý8 "SCIT Firewa1l2

RH 7.2 [RH 7.2

T T 192.169.181.0/24

VMWare Workstation 3.0

RedHat 7.2 Linux (Host OS)

Pentium 4 PC Hardware

To implement firewall rules, we use the kernel-based firewall implementation provided by Linux,
called ipchains. The operations of each firewall are controlled by a shell script that executes the following
steps. In the script, the first step is executed immediately after the underlying firewall has completed its
rebooting.

1. Configure firewall rules. Start traffic filtering and relaying in the background. The two tasks
will continue to be performed in the background until the machine is shutdown for rebooting
in Step 5.

2. Broadcast on subnets 192.168.225.0/24 and 192.168.181.0/24 Gratuitous ARP messages to
announce the ownership of firewall IP addresses. This step lasts 10 seconds; one ARP
message per second.

3. Wait for 10 seconds. This delay gives the other firewall extra times to detect the activities of
this firewall and to reboot.

4. This firewall now assumes the other firewall is in the process of rebooting. It sends ping
message periodically over the 192.168.88.0 network to probe the other firewall, until a reply
message is received. The receipt of a reply indicates the other firewall has completed self-
cleansing and is ready to take over.

5. Reboot (and thus return to step 1 after completion).

5.5 Secure tunneling
Although tunneling is not a SCIT technology, it is widely used in virtual private networks (VPN)

and its compatibility with SCIT firewalls is important. In our demonstration, a secure tunnel is built
between the server and client through the public Internet to reflect this practice.

While there are many commercial VPN products on the market, we choose an open-source VPN
implementation to save costs. As seen in Figure 7, our secure tunnel uses the PPP (Point-to-Point Protocol)
over an SSH (secure shell) connection. From the client's viewpoint, the tunnel is like a PPP-controlled
modem connection to the server (without the bandwidth limitation of a modem), where the "modem line" is
emulated by an SSH connection through the public Internet. The SSH connection connects the Ethernet
interface cards on the client and server machines. The PPP protocol builds two PPP network interfaces at
the end points of the SSH connection. The two PPP interfaces are sometimes called virtual for these do not
correspond to real networking devices (this does not use and has nothing to do with the VMware software).
User-level applications use PPP network interfaces to communicate. In Figure 7, the web server
application sends to the client a web page through the PPP interface on the server machine. The page is

Zero-trust Intrusion Containment for Telemedicine 151~5

then encrypted by SSH (still on the server) and leaves the server machine via the real, Ethernet interface
card. When the page arrives at the Ethernet card on the client machine, the page is decrypted and relayed
to the PPP interface. The client application, a browser, retrieves the page from the PPP interface and
renders the page on the screen. We point out that the arrows in the figure are used to emphasize the
direction of transmissions in the above example. The secure tunnel supports transmissions in two
directions.

Figure 7: Securing Tunneling

Client Server

BrowserWeb
Server

- pPp PPP
interface interface:,

Ethernet SSH Connection Etheret
Interface Interface

5.6 Current demo results
From the client inside the SCIT firewall, the user opens a browser window and begins web

surfing. We open two additional windows indicating which of the firewalls is operational. In the screen
capture shown in Figure 8, these correspond to the black background windows on the top of the screen.
The right-upper window shows that the presently running firewall is probing (unsuccessfully) the other
firewall. That is, the firewall is executing the Step 4 given above. The left-upper window shows the
booting message of the second firewall. The TATRC home page at the bottom is displayed by the client
Windows 2000. The page is, of course, obtained through the SCIT firewalls.

In general, for a typical HTML encoded web page, a firewall switch is barely perceptible -
examination of the trace sometimes shows occasional losses of packets, but it appears that the
retransmission of the packet is fast enough that the user cannot perceive the difference. Indeed, the setup is
good enough for our own production uses. While browsing the web to research the secure tunnel
technology, our RA regularly uses the Explorer on the client Windows 2000 with the SCIT firewalls
running. With the setup, we observed self-cleansing cycles in the vicinity of 90 seconds.

Zero-trust Intrusion Containment for Telemedicine 16

(0-014~ Wwir DREAMSam"I K=(InJun.-e ý, 2 - I ~ EW FII@ees med !,c , enf n qs Device Viw Hl

M ESRHV tiy n)'To E~o pt.ING' CootNDA PROJCT P ROPSAflB In F ARm t NEoo IP Carn

Mr Orr..d Gr~t. RMRW Risk Inomedica M laEenterrs workg'

AmSMR Mo-3-. ,,w-n~ro iiNA ___

sMoIecul r Ima~ging opens now frontier
oEvidenc: boildu case for virtual oolonogr.phy ,..,.b.r,..,..nsv..

Figure 8: Typical Screen Layout to Simultaneous Monitoring
of the SCIT firewall and Web Surfing

5.7 SCIT Web Servers

Our second prototype is a SCIT web server based on the concept depicted in Figure 9. As in the case of the
firewall prototype, two boxes are used build one SCIT web server. Each server box is a complete
computing device, including local storage devices for the operation system and application programs. The
two boxes have access to a shared storage to store contents of web pages. When one box is working, the
other server is performing self-cleansing by rebooting itself, followed by integrity checking of critical
system files and static web contents.

Zero-trust Intrusion Containment for Telemedicine

,W-box I

,W-box 2

(a) w-box 1 in operation (b) W-box 2 in operation

Figure 9. SCIT web server concept

The SCIT web server testbed is also based on the Virtual Machine software from VMWare, Inc. [6]. In the
testbed, the two w-boxes are virtual machines running RedHat 7.2 Linux. The shared storage is provided
by an NFS server running on a RedHat 7.2 virtual machine. The underlying host machine is a Pentium 4
PC also running RedHat 7.2 Linux. As seen in Figure 9, we build two virtual networks, one with subnet ID
192.168.181.0/24 and the other 192.168.225.0/24. A third subnet, 192.168.88.0/24, is used by the two
firewalls to probe each other. In this prototype, critical system files and web contents are protected by
digital signatures. While digitally signing critical information is not new, we further enhance its
effectiveness by integrating the signing tasks with self-cleansing cycles, given below.

Virtual machines
and networks

192.168.181.0/24

W-box 1 192.168.88 W-box 2
RH 7.2 RH 7.2

7 T 192.169.225.0/24

VMWare Workstation 3.0

RedHat 7.2 Linux (Host OS)

Pentium 4 PC Hardware

Figure 10. SCIT web server testbed

1. Check signature integrity, using previous keys.
2. Generate new keys and re-sign web pages with new keys.
3. Claim the web IP address by the VRRP (Virtual Router Redundancy Protocal).
4. Probe the other box, until a response is received.
5. Reboot and return to step 1.

In our SCIT server, new signatures are produced for protected files using new keys in every self-cleansing
cycle. The first task of a sever box after rebooting is to check signatures produced in the previous cycle
using the old keys and subsequently produces a set of new keys to compute new signatures. In this way,

Zero-trust Intrusion Containment for Telemedicine 18

the enemy has only the time window of one cycle to break/steal the current key. Even if the enemy
succeeds in the task, the time window to inflict damages to the system is limited to one cleansing cycle.

Notice that we depart from the firewall prototype in the technique of claiming a shared IP address. In stead
of using Gratuitous ARP, the VRRP (Virtual Router Redundancy Protocol) is used. Originally designed for
the failover of the gateway router in a subnet, the protocol can be used for any server to share an IP address
with its backup and perform smooth IP address handover in case of server failures.

5.8 Discussion

Our SCIT prototypes demonstrate the effectiveness of SCIT in several important aspects. First, system self-
cleansing limits the amount of time that a successful intruder has to stay in the system and inflict damages.
The longer this Intruder Residence Time the greater the damage and loss. We anticipate that the loss curve
will be an S-curve of the form in Figure 4. If the Intruder Residence Time is less than the low loss
threshold, then the cost of the intrusion is low, while an Intruder Residence Time greater that the high loss
threshold will lead to near max loss. The steep slope between the two thresholds indicates that it is
necessary to limit the Intruder Residence Time to less than low loss threshold. T he low loss threshold
reflects the reality that it takes a certain time window for a hacker to be able to issue malicious commands,
exploit backdoors, install Trojan horse programs, and/or steal/destroy data. A conservative estimate of the
low loss threshold is in the range of minutes. Although there is no hard data for building the loss curve,
there are reports that can help the process of building such a curve. For example, in [5] it is reported that in
the context of on-line banking, security experts believe that a theft of $5,000 to $10,000 can be carried out
over a few weeks, while larger losses up to $1 million are likely to take four to six months. In this context
it is emphasized that the loss curve must account for the possibility that the Intruder Residence Time is
spread over more than one successful breach of the system. In our experiences, self-cleasnsing cycles are
in the range from tens of seconds to minutes. Such short cycles limit the Intruder Residence Times and
thus severely limit the damages of even successful intrusions.

Second, combining SCIT with traditional system defenses enhances both. In the SCIT web server
prototype, the effectiveness of digital signatures is strengthened by the use of new keys in every cleansing
cycle. In the meantime, the effectiveness of self-cleansing is enhanced by the integrity checking of
signatures and accompanying recovery procedures when the check fails. The result is very short time
window to defeat two defenses. We believe SCIT has great potentials in collaborating with other
traditional system defenses, such authentication, certification, access control, checkpoints, rollback
procedures, and so forth.

Third, through our experiences of the two SCIT prototypes, we notice a close relation between SCIT a
branch of computing industry, namely, high-availability computing. A high-availability system typically
uses backup systems to ensure continued customer services in face of primary server failures. SCIT servers
share many design challenges with high-availability systems, such as the seamless takeover by the backup,
sharing of IP addresses between the primary and backup, and monitoring the primary servers. Indeed SCIT
can be considered as an extension to high-availability systems in the sense that artificial failure events are
introduced to force periodic takeover of the backup server and the self-cleansing of the primary server.
This view of SCIT justifies its technical feasibility: every high-availability product on the market gives
confidence to a corresponding SCIT system following similar designs. Indeed we already used open-
source packages from the High-Availability Linux project in our SCIT prototypes. Examples of existing
high-availability systems include web servers, NFS servers, authentication services, firewalls, and IPsec
gateways.

Fourth, SCIT can also be considered as a resilient technology. A resilient technology in system defense
automatically slows attacks so buying time for containment but does not root out the attacks themselves
[Will02]. The virus throttling technique proposed by Matthew Williamson for instance slows down virus
propagation by introducing delays to those connections that likely carry viruses in payloads (the distinction
can be made by observing connection destinations --- an infected server typically connects to as many
destinations as possible to spread viruses while a normal server makes connections to a much smaller set of

Zero-trust Intrusion Containment for Telemedicine
19

destinations). A second example is to introduce system call delays to applications not in conformance with
"typical" system call behaviors (and thus likely compromised). With such technologies in mind, consider
our SCIT web server prototype. If the enemy does not have the capacity to break a new key in each self-
cleansing cycle, then SCIT succeeds in fending off the attack. Otherwise, SCIT at least slows the attack by
forcing the repeat of some attack procedures after every rebooting. Our prototypes in this light demonstrate
two benefits of SCIT: an effective SCIT technology constitutes a defense; a less successful one degenerates
to a resilient technology and still contributes to the overall security of the system.

6. CONCLUSIONS

In this research we have built the SCIT firewall and a class of SCIT web server. We conducted tests in the
laboratory to verify that the switch between SCIT boxes did not result in performance degradation for the
user. T he e xperience from this project and the firewall and web server tests have shown that the SCIT
concept can be further generalized. This validation of the SCIT has lead to our exploring the extension of
this concept to more complex environments. Our future research in the application of SCIT will involve
developing SCIT for single processor systems that are more complex than the SCIT firewall or web server,
and analyzing SCIT in the context of network of processors as compared to a stand alone system. For
example we expect that SCIT approach can be applied to protect NFS Server, Certification Server or
Certification Client.

References

[ACDK96] H. Abu-Amara, B. A. Coan, S. Dolev, and A. Kanevsky, "Self-stabilizing topology
maintenance protocols for high-speed networks," IEEE/ACM Trans. on Networking, Vol. 4, No. 6,
pp. 902 - 912, December 1996.

[AFVa95] D. Anderson, T. Frivold and A. Valdes, "Next generation intrusion detection expert system
(NIDES)," RT SRI CSL-95-07, SRI International, Menlo Park, CA 94025-3493, May 1995.

[BGJo99] Joffroy Beauquier, Maria Gradinariu and Colette Johnen, "Memory space requirements for self-
stabilizing leader election protocols", Proceedings of the eh annual ACM Symposium on
Principles of Distributed Computing, pp. 199 - 207, May 1999, Atlanta, GA USA.

[Bish99] M. Bishop, "Vulnerabilities Analysis," Recent Advances in Intrusion Detection (Sep. 1999)

[BRSN90] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair, K. Roy, V. Balasubramanian, and J. A.
Abraham, "Algorithm-based fault tolerance on a hypercube multiprocessor," IEEE Trans. on
Computers, Vol. 39, No. 9, pp. 1132 - 1144, September 1990.

[BuPa89] James E. Burns and Jan Pachl, "Uniform self-stabilizing rings," ACM Trans. On Programming
Languages and Systems, Vol. 11, No. 2, pp. 330 - 344, April 1898.

[CNSW97] A. Chowdhary, L. Nicklas, S. Setia, and E. White, "Dynamic space sharing on clusters of non-
dedicated workstations," in 1 72h International Conference on Distributed Computing Systems, May
1997.

[CIDF] B. Tung, "Common intrusion detection framework (CIDF)." URL http://www.isi.edu/gost/cidf/,
September 1999.

[Dijk74] E. W. Dijkstra, "Self-stabilizing systems in spite of distributed control," Comm. A CM, vol. 17, no.
11, 1974.

[HaRe83] T. Haerder and A. Reuter, "Principles of transaction oriented database recovery -- a taxonomy,"
ACM Comput. Surv., vol. 15, December 1983.

[HoPu93] C. Hofineister and J. Purtilo, "Dynamic reconfiguration in distributed systems: adapting software
modules for replacement," in 13' International Conference in Distributed Computing Systems,
pp. 10 1 - 110, 1993.

Zero-trust Intrusion Containment for Telemedicine

20

[HoWhPu93] Hofmeister, C., White, E. and Purtilo, J. 1993. Surgeon: a packager for dynamically
reconfigurable distributed applications, IEE Software Engineering, 8,2, pp. 95-101.

[Ho93] Hofmneister, C. Dynamic reconfiguration of Distributed Applications. Ph.D. Thesis, University of
Maryland, College Park, 1993.

[HuMc99] Yih Huang and P. K. McKinley, "Tree-based link-state routing in the presence of routing
information corruption," Proceedings of IEEE ICCCN '99, Boston, 1999.

[HuSo02] Yih Huang and Arun Sood, "Self-Cleansing Systems for Intrusion Containment," Proceedings of
Workshop on Self-Healing, Adaptive, and Self-Managed Systems (SHAMAN), New York City,
June 2002.

[KrMa90] Kramer, J. and Magee, J. 1990. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 15,11, pp. 1293--1306.

[Linux-HA] High-Availability Linux Project. Home page http://linux-ha.or/.

[LiPo99] U. Lindqvist and P. Porras, "Detecting computer and network misuse through the production-
based expert system toolset," IEEE Symposium on Security and Privacy, Oakland, CA. May 9-12,
1999.

[MHPS92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, "ARIES: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging," ACM Transactions on Database Systems, vol. 17, pp. 94 - 162, March 1992.

[MoLO86] C. Mohan, B. Lindsay, and R. Obermarck, "Transaction management in the {R}* distributed
database management system," ACM Transactions on Database Systems}, vol. 11, pp. 378 - 396,
December 1986.

[MWill02] Matthew M. Williamson, "Throttling Viruses: Restricting Propagation to defeat Malicious
Mobile Code," in Proceedings of 18'b Annual Computer Security Applications Conferences, (Las
Vegas, Nevada), December 2002.

[NSTh02] D. Newman, J. Snyder, and R. Thayer, "Crying wolf: False alarms hide attacks." Appeared on
Network World Fusion at http://www.nwfusion.com/techinsider/2002/0624securityl.html, June
2002.

[Perl88] R. Perlman, Network Layer Protocols with Byzantine Robustness. PhD thesis, MIT, October 1988.

[RFC2154] S. Murphy, M. Badger, and B. Wellington, "OSPF with digital signatures." Internet RFC 2154,
June 1997.

[RFC2338] S. Knight, D. Weaver, D. Whipple, R. Hinden, D. Mitzel, P. Hunt, P. Higginson, M. Shand, A.
Lindemr, "Virtual Router Redundancy Protocol," RFC 2338, April 1998.

[RFC2385] A. Heffernan, "Protection of BGP sessions via the TCP MD5 signature option." Intemet RFC
2385, August 1998.

[Spin97] John M. Spinelli, "Self-stabilizing sliding window ARQ protocols," IEEE/ACM Trans. on
Networking, Vol. 5, No. 2, pp. 245 - 254, April 1997.

[SoFoOO] A. Somayaji and S. Forrest, "Automated response using system-call delays," in Proceedings of
the 9th USENIX Security Symposium, (Denver, CO), pp. 185--197, August 2000.

[Vmware] VMware Inc. Home page http://www.vniware-.com/.

[Weyg96] Peter S. Weygant, Clusters for High Availability, Prentice Hall, 1996.

[Will02] Mathew M. Williamson, "Resilient Infrastructure for Network Security." HP Labs Technical
Reports HPL-2002-273. Available at http://wwxv.hpl.hp.com/techreports/2002/HPL-2002-
273.html.

Zero-trust Intrusion Containment for Telemedicine
21

Self-Cleansing Systems for Intrusion Containment

Yih Huang Arun Sood
Computer Science Department Computer Science Department

George Mason University George Mason University
Fairfax, VA 22030 Fairfax, VA 22030

(703) 993 1540 (703) 993 1524
huangyih@cs.gmu.edu asood@cs.gmu.edu

ABSTRACT subsystem isolation. Such an I MS approach relies heavily
In this paper, we discuss the application of high- on the ability to detect intrusion events in the first place.

availability computing systems to intrusion containment. We however make the pessimistic but realistic assumption
Intrusion Management Systems (IMS) serve to protect that not all intrusion activities can be detected and blocked
complex computer systems from unauthorized intrusions. (at least not in a timely manner to avoid significant damage)
The traditional IMS approaches rely on intrusion and seek technologies to build secure systems which
prevention and detection, followed by implementation of constantly assume the compromise of the system and
intrusion resistance procedures. A key assumption of a perform self-cleansing, regardless of whether intrusion
traditional IMS is that it is possible to detect all intrusions, alarms actually occur or not. We argue that such an
We believe that the sophistication and rapid evolution of assumption is appropriate given the sophistication and rapid
information warfare require the more pessimistic evolution of information warfare. It is especially important
assumption that undetected intrusions will occur and must for critical distributed computing systems: To achieve the
be guarded against as well. highest level of security, we must not be overconfident in
Our approach, called Self-Cleansing Intrusion Tolerance either our knowledge of enemy tactics and technologies or
(SCIT), pushes the concept of high-availability computing our capability to fend off all attacks.
one step further. In a SCIT system, a server is periodically One implementation of self-cleansing involves rebooting
assumed to have "failed," namely, comprised by undetected the subsystem from a trusted storage device followed by, if
intrusion. Consequently, the server is brought off-line for necessary, system recovery, checkpoint, rollback, and data
cleansing and integrity checking while a backup takes over. integrity checking routines. (A trusted storage device can be
Indeed, it is more appropriate to see a SCIT system as two either a read-only storage device or any nonvolatile storage
mirror servers working alternatively than as a primary where information is cryptographically signed.) Systemserver and its backup. In this paper, we define the concept availability is achieved by means of redundancy, that is, a
of SCIT, present our experiences in building a SCIT second mirror system is brought online to provide services.
firewall prototype, and discuss the future work in more In this way, SCIT can be considered as a branch of high-
advanced SCIT servers. availability computing [3,4]: I n a highly available system,

sufficient hardware redundancy is built into the system so
Keywords that a backup can immediately replace a failed system. In
high-availability computing, computer security, intrusion SCIT, the switching from one system to its mirror is not
containment, self-cleansing systems. only triggered by failures; it is a regular routine designed to

1. INTRODUCTION root out undetected intrusion activities.
Computer systems are becoming more complex and are To illustrate, we apply the SCIT approach to firewalls.
increasingly vulnerable to cyber warfare. Typical Here we assume that the decision of whether to drop a
(traditional) Intrusion Management Systems (IMS) are packet is strictly made on a per-packet basis.' Firewalls are
based on intrusion prevention and detection followed by widely used to block undesirable, potentially hostile packets

implementation of intrusion resistance proceduresllowd]b at the entry to a secure site. A successful and unnoticed
The latter generally includes intrusion tracking and firewall subversion will leave the door to the site open,

exposing the internals of the victimized site to the outside

This research is supported by US Army's Telemedicine and The cases of stateful firewalls, which maintain state information
Advanced Technology Research Center (TATRC), under contract of ongoing TCP connections, will be more involved. Also, we
number DAMD 17-01-1-0825. do not consider proxy servers as part of the firewall.

22

world. As seen in Figure 1, we simply use two identical curve must account for the possibility that the Intruder
firewalls, called f-boxes in the figure. When one f-box is Residence Time is spread over more than one successful
working, the other box will be performing self-cleansing by breach of the system.
rebooting itself. Assuming that rebooting is from read-only
devices, a rebooted f-box will be in a clean state and can
perform packet filtering needed to protect the site. As such,
even if the enemy managed to break into one f-box, its
control over that box is limited to one self-cleansing cycle.
More complicated SCIT systems will be discussed later. 0/

Figure 1. SCIT Firewall

0 tow los
System self-cleansing limits the amount of time that a 0
successful intruder has to stay in the system and inflict

Box in operation Box in self-
-------. cleansing

Intruder Residence Time
SCIT Firewall

Figure 2: Loss curve: Loss in dollars vs. Intruder
In n __ PResidence Time in minutesInbound f-box Packets

traffic "admitted Lastly, we point out that SCIT complements and
- f-b 2 -.. strengthens existing intrusion prevention and detection

technologies [1,2]; we do not eliminate the use of the
(a) f-box I in operation current intrusion management systems, but rather add

another layer of defense, extending the idea of system
SCIT Firewall "defense-in-depth" through periodic system cleansing. The

effectiveness of SCIT depends on fast self-cleansing cycles,

Inbound .-: f-box I - restricting the attackers to a very short time window to
"----- -------- - 00. Packets breach the system and cause harms.traffic J"admitted-,f-box2 The remainder of the paper is organized as follows. In

Section 2, we present our experiences in building a
(b) f-box 2 in operation prototype of SCIT firewalls. In Section 3, we discuss the
(s floxr 2s Ifeasibility of "SCIT-izing" more complicated systems, such

damages. The longer this Intruder Residence Time the as file servers. We give concluding remarks and outlinegreater the damage and loss. We anticipate that the loss future work in Section 4.

curve will be an S-curve of the form in Figure 2. If the

Intruder Residence Time is less than the low loss threshold, 2. SCIT FIREWALLS
then the cost of the intrusion is low, while an Intruder
Residence Time greater that the high loss threshold will We chose firewalls as the first application of SCIT. The
lead to near max loss. The steep slope between the two rational is twofold. First, the operation of stateless firewalls
thresholds indicates that it is necessary to limit the Intruder lends itself to SCIT, owing to the relative ease for a backup
Residence Time to less than low loss threshold. The low or mirror system to take over without disrupting ongoing
loss threshold reflects the reality that it takes a certain time traffic. Second, firewalls form the first line of defense for
window for a hacker to be able to issue malicious many private networks and thus are obvious targets of
commands, exploit backdoors, install Trojan horse intrusion attacks. Strengthening the defense of firewalls
programs, and/or steal/destroy data. A conservative significantly reduces the risk of security breaches in the
estimate of the low loss threshold is in the range of minutes. whole network. The applications of the SCIT approach to
Although there is no hard data for building the loss curve, more comle system sasead
there are reports that can help the process of building such a servers, will be discussed later.
curve. For example, in [5] it is reported that in the context Our testbed is based on the Virtual Machine software from
of on-line banking, security experts believe that a theft of VMWare, Inc. [6]. The virtual machine technology enables
$5,000 to $10,000 can be carried out over a few weeks, multiple guest operating systems to be installed and
while larger losses up to $1 million are likely to take four to executed on top of a host operating system. In our demo, a
six months. In this context it is emphasized that the loss client uses the Explorer on Windows 2000 to surf the web.

The client Windows is protected by SCIT firewalls. Both announce the ownership of firewall IP addresses.
the client Windows machine and its SCIT firewalls are This step lasts 10 seconds, one ARP message per
implemented as virtual machines. The underlying host second.
machine is a Pentium 4 PC running RedHat 7.2 Linux. 3. Wait for 10 seconds. This delay gives the other
VMWare supports not only virtual machines but also firewall extra times to detect the activities of this
virtual networks, which are emulated switched Ethernet firewall and to reboot.
networks. As seen in Figure 3, we use this feature to build
two virtual networks, one with subnet ID 192.168.181.0/24 4. This firewall now assumes the other firewall is
and the other 192.168.202.0/24. The first subnet connects rebooting. It sends ping messages periodically over
the host system to the two firewalls. Both firewalls use a the 192.168.88.0 network to probe the other firewall,
specialized version of RedHat 7.2 Linux. The latter subnet until a reply message is received. The receipt of a

connects the firewalls to the client Windows. Inbound reply indicates the other firewall has completed self-

traffic are received by the host and relayed to one of the cleansing and is ready to take over.

firewalls, which filters and relays the traffic to the client 5. Reboot (and thus return to step 1 after completion).
Windows. A third subnet, 192.168.200.0/24, is used by the From the client inside the SCIT firewall, the user opens a
two firewalls to probe each other. To enable the client browser window and begins web surfing. We open two
Windows to communicate with the public Internet, its additional windows indicating which of the firewalls is
private IP address is translated to a public IP address by IP operational. In the screen capture shown in Figure 4, these
Masquerading, a form of network address translation that is correspond to the black background windows on the top of
supported by Linux kernels. the screen. The left-upper window shows that the presently

When a newly cleansed firewall is ready for operation, it running firewall is probing (unsuccessfully) the other
must take over the IP addresses used by the presently firewall. That is, the firewall is executing the Step 4 given
running firewall. The firewall achieves this by issuing above. The right-upper window shows the booting message
Gratuitous ARP messages using the Fake package [7]. The of the second firewall. The client Windows 2000 displays
firewall rules are implemented in IPCHAINS. A shell the CNN home page at the bottom. The page is, of course,
script that executes the following steps controls the obtained through the SCIT firewalls.
operations of each firewall. In the script, the first step is In general, for a typical HTML encoded web page, a
executed immediately after the underlying firewall has firewall switch is barely perceptible. Examination of the
completed rebooting. trace sometimes shows occasional losses of packets when

switching firewalls, but it appears that the retransmission of
the packets is fast enough that the user cannot perceive the

Virtual machines difference. Indeed, the setup is good enough for our own
production uses - our research assistant regularly uses the

setup for emails and web serving. With the setup, we
192.168.225.0/24 observed self-cleansing cycles in the vicinity of 90 seconds.

Finally, it is worth pointing out that the self-cleansing of a
[ISCIT Firewall 1 192.168.88 SC1T Firewall 2 firewall in the above steps comprises merely rebooting it.

RH 7A.2 RH 7.2 Assuming that the firewall is booted entirely from read-only
T 192.169.181.0/24 storage, rebooting is sufficient to bring it to a clean state.

While this assumption is reasonable for relatively simple
VMWare Workstation 3.0 devices like firewalls, in general cases more involved self-

RedHat 7.2 Linux (Host OS) cleansing procedures are needed. For instance, using a tool
called Tripwire, a system audit can be carried out after

Pentium 4 PC Hardware rebooting to check the integrity of system files [8].

Figure 3. SCIT firewall prototype 3. A DISCUSSION OF SCIT SERVERS

1. Setup firewall rules using the ipchains command. We have shown a prototype design of SCIT firewalls. In
Start traffic filtering and relaying in the background. this section we discuss the possibilities and difficulties of
The two tasks will continue to be performed in the extending the concept to various type of servers in
background until the machine is shutdown for distributed computing environments. We call this task the
rebooting in Step 5. "SCIT-ization" of servers.

2. Broadcast on subnets 192.168.225.0/24 and 1. Stateless servers are relatively straightforward to
192.168.181.0/24 Gratuitous ARP messages to SCIT-ize. By stateless we mean the server does not

have to keep track of in memory the outcomes of involves at a minimum moving endpoints of TCP
previous tasks in order to carry out new tasks. NFS connections on the fly and is unfeasible with the
is a prominent example of stateless systems. Notice standard TCP. We will not further consider long-
that dependences on the previous outcomes session servers for the time being.
maintained in nonvolatile storage can be managed by 3. Servers that manage static or semi-static data are
SCIT, for mirror systems can share the storage. relatively easy to SCIT-ize. A DNS, LDPA, or
Storage sharing can be achieved by, for example, a certification server, for instance, handles datasets
SCSI bus in a s mall-scale system or a s ystem-wide that are typically small and infrequently changed.
network (SAN) in a large cluster. Static, small datasets enable efficient data mirroring

2. Servers that handle short sessions are relatively and thus facilitates the construction of identical
straightforward to SCIT-ize. Such servers are servers to operate a iternatively. Due to the critical
typically transaction oriented and process request- roles played by DNS and certification servers, SCIT
and-response types of tasks. Examples include DNS technologies specifically developed for these servers
servers, some database servers, and certification further strengthen overall system security.
servers. Telnet, FTP, and many application proxy
servers are examples of long-session servers. A long
session in a SCIT system needs to be migrated to a
mirror system in the middle of the session. The task

fX1-W VMwae workstation IFOB bunux (ian)P
Ella Power Sailtlngir Devices View Help Elie Power Settings Device's Viw .. etjp'I.. . .'• ..

1,if.com .
1-- ", ie tire

"..... N, lln ote ro t j,-et• iesc e:ise rE

Figure 4. Screen capture of the SCIT firewall prototype

Indeed, we do not expect that the concept of SCIT be such as file systems, web servers, DNS servers, and

compatible with all types of computing systems. We do certification services. The most important challenge in our
believe that SCIT is applicable to many important servers in future research is to design efficient SCIT architectures for
distributed computing environments or Intemet services, these servers. To conclude this section, we present the

blueprint of our next SCIT system, a SCIT NFS server, those kernel codes potentially contaminated by hostile
The design is based on a high-availability file server communications. With self-cleansing activities occurring at
architecture discussed in [9,10]. As shown in Figure 5, two several levels of the system and at different frequencies,
server machines connect to a SCSI bus to share a SCSI hard SCIT makes it very difficult for attackers to cause actual
drive that stores the file system data. Similar to the SCIT harms, even if they are able to penetrate existing intrusion
firewalls, the two server boxes must share one IP address defenses.
using the technique described earlier. Also, a second set of
network interfaces is used by currently running server to References
probe the status of the other server. At the time of this [1] M. Bishop, "Vulnerabilities Analysis," Recent
writing, we are implementing the design using the virtual Advances in Intrusion Detection, September 1999.
machine technology. [2] Common Intrusion Detection Framework,

http://www.gidos.org/.

[3] High-Availability Linux Project. Home page
http://linux-ha.or,/.

Server Box I Server Box 2
-ZSCSI Bus [4] Peter S. Weygant, Clusters for High Availability,

Prentice Hall, 1996.

[5] Sandeep Junnarkar, "Anatomy of a hacking", available at
"http://news.com.com/2009-1017-893228.html, May 2002.

[6] VMware Inc. Home page http://www.vmware.con-/.SProbe signals
Poesga [7] The Fake package. Home page

http://vergenet.net/linux/fake/.

[8] Gene H. Kim and Eugene H. Spafford, "Writing,
Networ that clients use to reach the servers Supporting, and Evaluating Tripwire: A Publicly

Available Security Tool," in Proceedings of USENIX
Figure 5. The blueprint of a SCIT NFS Server. Applications Development Symposium, (Toronto,

Canada), April 1994. Also see
4. CONCLUSION http://www.tripwire.com/.

We have presented a novel application of high-availability [9] Steve Blackmon and John Nguyen, "High-Availability
computing, namely, intrusion containment. Our SCIT File Server with Heartbeat," System Admin, the
approach uses multiple, identical servers to execute in turn, Journal for UNIX Systems Administrators, vol. 10, no.
allowing off-line servers to be checked for integrity and 9, September 2001.
cleansed to return to a clean state. These self-cleansing [10]Richard Rabbat, Tom McNeal and Tim Burke, "A
activities occur periodically, regardless the High-Availability Clustering Architecture with Data
presence/absence of intrusion alarms. As such, SCIT Integrity Guarantees," Proceedings of IEEE
provides a defense against unknown or severe attacks that International conference on Cluster Computing, pages
defeat the intrusion detection system. The effectiveness of 178 - 182, (Newport Beach, California) October,
SCIT depends on fast self-cleansing cycles, restricting the 2001.
attackers to a very short time window to breach the system
and inflict damages. The cost of hardware redundancy in
SCIT systems can be avoided by using the virtual machine
technology, as demonstrated in our SCIT firewall
prototype.

At this early stage, we investigated only one self-cleansing
method in detail, that is, rebooting followed possibly by
data integrity checks and system audits. However, we
envision many layers of cleansing activities in an ultimate
SCIT system. In addition to rebooting the servers, one can
kill and re-launch the server daemon. This process-level
cleansing imposes less overhead, compared to system
rebooting. Y et another s ystem c leansing method is to re-
load dynamic kernel modules, in the attempt to clean up

